Устройство большого адронного коллайдера

Устройство большого адронного коллайдера, Адронный коллайдер 2009, Адронный коллайдер 2010

Как же работает большой адронный коллайдер? В основе работы БАК, как и всех ускорителей, заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать ее энергию. Магнитное же поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя ее энергии, и задает орбиту, по которой движутся частицы.

Как уже упоминалось, скорость частиц в БАК близка к скорости света в вакууме. Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28ГэВ. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем пучок направляют в главное 26,7-километровое кольцо.

Адронный коллайдер 2009

Всё кольцо коллайдера разделено на восемь равных секторов, на каждом из которых стоят в ряд магниты, управляющие движением пучка протонов. Под воздействием магнитного поля элементарные частицы не улетают прочь по касательной, а остаются внутри кольца. Кроме того, специальные фокусирующие магниты не дают протонам во время движения колебаться в продольном направлении и задевать стенки вакуумной трубы, в которой осуществляется движение.

Всего вдоль тоннеля установлено 1624 магнита. Их протяженность в общей сложности превышает 22 км, длина каждого магнита около 15 метров. Магниты используются двух видов — квадропульные (392 шт.) и дипольные (1232 шт.). Именно дипольные магниты удерживают частицы, тогда как квадропульные магниты нужны для того, что бы максимально повысить шансы на взаимодействие частиц, которые может произойти в местах пересечения труб. Общий вес одного магнита составляет более 27 тонн.

частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28ГэВ

Для достижения требуемых величин напряженности магнитного поля магниты пришлось делать со сверхпроводящими обмотками. Поэтому для проведения в рабочее состояние их необходимо охлаждать до температуры 1,9 К (или -271,3 градуса по Цельсию). Это ниже, чем температура в открытом космическом пространстве (2,7 К или -270,5 градуса по Цельсию). Чтобы охладить 36800 тонн конструкции и получить космический холод в земных условиях, для БАК пришлось создать мощнейшую криогенную систему, содержащую более 40000 герметичных сварных швов, и использующую 10000 тонн жидкого азота и 130 тонн жидкого гелия.

В четырех местах пучки из двух труб ускорителя пересекаются, и в этих местах происходит столкновение протонов с энергией, в 7 раз выше предыдущего рекорда, достигнутого на ускорителе Тэватрон в США. В точке столкновения протонов ожидается температура более чем в 100 тым. раз выше, чем в центре Солнца, при том, что сверхпроводящие магниты  БАКе будут охлаждены до -271,3 градуса по Цельсию. Так что, можно сказать, БАК — это одновременно и самая горячая, и самая холодная машина в мире.

Столкновение двух частиц «лоб в лоб» — событие довольно редкое. Когда пересекаются два пучка по 100 миллиардов частиц в каждом, сталкиваются всего 20 частиц. Но поскольку пучки пересекаются примерно 30 миллионов раз в секунду, ежесекундно может происходить 600 миллионов столкновений.

При столкновении протонов во все стороны летят «брызги» — элементарные частицы, в среднем их рождается порядка 100 на каждое столкновение. В проекте предусмотрено, что в будущем по тем же трубам будут ускорять не только протоны, но и ядра свинца: в этом случае при каждом столкновении ядер будет рождаться порядка 15000 новых частиц.

Однако столкнуть две частицы «лоб в лоб» — это только половина дела. К сожалению, сегодня в распоряжении ученых нет прибора, который мог бы напрямую зарегистрировать, например, кварк-глюонную плазму, которая исчезнет без следа через ничтожно короткий промежуток времени 10 (в минус 23 степени) секунды. О результатах эксперимента приходится судить по следам, оставленным частицами, родившимися в ходе эксперемаента. Для регистрации чатиц, которые образовались во время столкновения, были сконструированы специальные приборы — детекторы. Их шесть — ALICE (A Large Ion Collider Experiment), ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), LHCb (Yhe Large Hadron Collider beauty experiment), TOTEM (TOTal Elastic and diffraclive cross section Measurement) и LHCf (The Large Hadron Collider forward).

Адронный коллайдер 2010

Детектор под название ALICE предназначен для изучения кварк-глюонной плазмы. Детекторы ATLAS и CMS, как надеются физики, смогут «поймать» бозон Хиггса и темную материю. Задача детекторы LHCb — исследование физики b-кварков, что позволит лучше понять различия между материей и антиматерией. TOTEM  — для изучения «несталкивающихся частиц» (forward particles), что позволит точнее измерить размер протонов, и, наконец, LHCf  — для исследования космических лучей, моделируемых с помощью тех же «несталкивающихся частиц».

Количество информации, получаемой этими детекторами беспрецедентно велико, к тому же ее требуется передавать во все страны, где работают участники экспериментов. Поэтому в ЦЕРНе создается новая система для быстрого распространения огромных массивов данных — GRID. Эта система должна будет хранить и обсчитывать данные, получаемые с детекторов ускорителя. Поток данных будет достигать 15 млн. гигабайт в год, что соответствует стопке из 100 тыс. DVD. Возможно система GRID станет и прообразом нового Суперинтернета.Учитывая, что сам Интернет и Всемирная паутина родились, именно в ЦЕРНе. Здесь уже в 80-е годы стала насущной задача быстрой передачи больших международных коллективов ученых, разбросанных по все континентам. В результате в ЦЕРНе был впервые создан прототип Всемирной паутины и разработано соответствующее программное обеспечение.

Детекторы ATLAS и CMS, как надеются физики, смогут поймать бозон Хиггса и темную материю


Техноплаза-Сибирь: ремонт техники, ремонт грузовых автомобилей, ремонт легковых автомобилей в Новосибирске

7 Комментарии “Устройство большого адронного коллайдера

  1. Блог отличный. Вам награду бы за него или просто орден почета. 😉

  2. Спасибо. К сожалению, пишу не каждый день, да и мало кто про него знает, да и комментаторов раз-два и обчелся.

  3. Интересно написано. Притом откуда такие схемы? Скопировали прямиком из их хранилища?
    Ещё интересует, есть ли официальный сайт адронного коллайдера, как он называется? Сайт адронный коллайдер, Адронный коллайдер официальный сайт, и когда же начнется запуск большого адронного коллайдера?

  4. Вот, на счет когда начнется запуск большого адронного коллайдер — не знаю, обещали в начале зимы, ищите новости.

    Схемы отсканированы из одного журнала. Наберите в поисковике: Схема работы адронного коллайдера — возможно появится много изображений.

  5. Хочу разместить рекламу у Вас на it-master.biz, в разделе этот т.е. его надо закрепить. Подскажите, можно ли это и сколько это стоит? Для начала на на пару недель.

  6. Да в принципе это возможно, напишите какой объем рекламы или её разрешения. Надеюсь, на цене сойдемся.

  7. БАК грандиозен, как сложное на пределе технических и научных достихений ряда Наук, но создание это не приблизит решения проблемы строения Материи.Необходимые энергии достигнуты до 1970 года.Есть другое действительно научно обоснованное решение проблемы строения Материи,и пора прекратить «игру»вокруг Большого Взыва и кварков.Повышение энергии ускорения бессмысленно и крайне опасно.Обращайтесь,и мы решим не только проблему строения Материи.

Комментарии закрыты